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Abstract: This paper presents an autonomous navigation architecture for a robot using stereo
vision-based localisation. The main contribution is the prediction of the quality of future
localisation of the system in order to detect and avoid areas where vision-based localisation
may fail, due to lack of texture in the scene. A criterion based on the estimation of future
visible landmarks, considering uncertainties on landmarks and camera positions, is integrated
in a Model Predictive Control loop to compute safe trajectories with respect to the visual
localisation. The system was tested on a mobile robot and the obtained results demonstrate the
effectiveness of our method.
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1. INTRODUCTION

This work takes place in the context of autonomous nav-
igation in unknown indoor environments with Micro Air
Vehicles or mobile robots. In this kind of environment,
there are no global localisation systems available such as
GPS. Vision sensors are then a usual solution for estimat-
ing the localisation of a vehicle. Using visual landmarks in
the images, a visual odometry algorithm can be used to
compute the position and orientation of the camera and
thus of the system. However, if the scene contains too few
landmarks, for instance when the robot faces a white wall,
the algorithm cannot extract enough landmarks to com-
pute the localisation accurately. In this case, the mission
is likely to fail. In this work, we aim at ensuring that the
system remains well-localised during the mission time. To
reach this objective, we have developed a criterion that
predicts the quality of the scene for localisation, using
already known landmarks. We have then integrated this
criterion into a Model Predictive Control (MPC) loop so
as to demonstrate its efficiency on a real robot.

1.1 Related work

In the literature, some authors were interested in the
ability to predict the quality of future measurements to
improve navigation algorithms, (see Makarenko and et al.
(2002), Bourgaul et al. (2002), Vidal-Calleja et al. (2006),
Sim and Roy (2005)) or environment reconstruction algo-
rithms (Forster et al. (2014), Dunn et al. (2009)). Some
authors propose a criterion based on the Shannon entropy
(see Bourgaul et al. (2002), Bachrach et al. (2012), Sim
and Roy (2005)). Vidal-Calleja et al. (2006) choose the
optimal control to reduce uncertainties on the camera and
landmark positions using a criterion based on the mutual
information. Forster et al. (2014) use the information gain
to choose the trajectory that maximizes the precision of

the environment reconstruction. Other approaches rely on
a criterion based on image or scene geometry. Dunn et al.
(2009) look for a Next-Best-View, considering uncertain-
ties on measurements and scene appearance. Sadat et al.
(2014) compute a texture criterion from the local density
of triangles in the 3D mesh used for environment recon-
struction. This criterion is used for planning trajectories
with RRT* in real time towards a desired goal. Mostegel
et al. (2014) propose a criterion which accounts for the
geometric quality of landmarks (triangulation angle, proof
of existence) and for the ability of recognizing each point
in order to improve waypoint navigation. In all these refer-
ences, the authors use a monocular camera, whereas, in our
case, we use a stereo rig. It allows us to directly access the
depth information for each point. Moreover, unlike most
of these references, we take into account uncertainties on
the landmark positions and the camera position.

1.2 Overview

The basic mission considered in this work is to perform
autonomous navigation between waypoints with a mobile
robot. The environment can have relatively textureless
areas that are a problem for the visual localisation. This
is why the robot has to detect these zones in order to
choose safe trajectories to navigate. To locate itself, the
robot is equipped with a stereo rig, composed of two
fixed cameras with known calibration. The stereo images
received from the rig are used to compute the pose with
a visual odometry algorithm. The main steps of such an
algorithm are:

• Interest points, like Harris (Harris and Stephens
(1988)), are extracted from both images and matched.

• The 3D positions of the corresponding points in the
scene are computed by triangulation.



• The motion of the left camera is estimated from the
apparent displacement of the projections of the 3D
points in the images.

In this work, we have choosen to use eVO, a visual odome-
try algorithm described in Sanfourche et al. (2013). Other
stereo algorithms could be considered as well, e.g. Klein
and Murray (2007). A criterion is proposed to evaluate
the quality of the scene that the robot will encounter in
a future position. It uses the 3D points sent by the visual
odometry algorithm to predict the visible points in the
images in the future, considering the uncertainties on the
landmark positions and on the movement of the system.
The criterion is explained in Section 2. We have set up
experiments to demonstrate the relevance of this criterion,
which are described in Section 2.5. A navigation strategy
based on MPC is presented in Section 3. It integrates our
localisation quality criterion with waypoint navigation and
an obstacle avoidance criterion. Experimental results of
navigation are shown in Section 4.

2. LOCALISATION QUALITY CRITERION

Let us first introduce some notations. Y = (x, y, z)
T

is a
3D point, expressed in a global frame (W), unless other-
wise stated, defined by the camera position and orientation
at the beginning of the mission. The camera frame (Cn)
is the frame defined by the current camera position and
orientation. At t0, (W) and (Cn) are coincident. For a

vector v, ṽ = (v, 1)
T

is the augmented vector.

2.1 Projection of a 3D point

Given a 3D point computed by the visual odometry
algorithm and a desired camera position, the 2D projection
of the 3D point in the corresponding image is computed.
First, the 3D point is expressed in the camera frame, then,
the projection is computed.

Change of basis T is the translation vector and R is the
rotation matrix from camera frame to global frame. The
new coordinates of the 3D point Y , denoted Y ′, are

Ỹ ′ = P−1Ỹ =

(
R T
0 1

)−1

Ỹ (1)

Camera model Let p = (u, v)
T

denote the image projec-

tion point of a 3D point Y = (x, y, z)
T

, expressed in the
camera frame. α is the focal length and (u0, v0) are the
optical center coordinates.

p̃ = z−1KY = z−1

(
α 0 u0

0 α v0

0 0 1

)
Y (2)

2.2 Uncertainty computation

The goal is to estimate the uncertainty on the position of a
projected point on the image after a camera displacement,
denoted with rotation and translation (R, T ). The rotation
matrix is written as

R = Rz(θz)Ry(θy)Rx(θx) (3)

R,T

(u, v)

d

Y

(u', v')

global frame

x

y

camera 
frame at tn

camera 
frame at tn+H

Fig. 1. Computing the 2D projection of a point in a future
camera image: (u, v, d) and (R, T ) are known. Y is
triangulated using (u, v, d). (u′, v′) is deduced from Y
and (R, T ).

where R• is the rotation about the • axis by an angle θ•,
and the translation vector is written

T = (tx, ty, tz)
T (4)

Θ = (θx, θy, θz, tx, ty, tz) is the vector of the displacement
parameters and (u, v, d), the projected point position in
the left camera and disparity. The uncertainties on the
triangulation of the 3D point and on the estimation of
the camera position after the displacement are taken into
account. We model the uncertainties on Θ and (u, v, d)
by a normal distribution with zero mean. The covariance
matrices are denoted by ΣΘ and Σu,v,d. Moreover, the
uncertainties between Θ and (u, v, d) are assumed to be
independent. As shown in Figure 1, p = (u, v) is the
projected point in the image in the first position and p′

the projected point in the image after the displacement of
the camera.

Expression of p′ To express p′ as a function f of
(Θ, u, v, d), we use a triangulation function denoted by
Π−1, the change of basis (R, T ) and a projection function
denoted by Π:

p′ = f (Θ, u, v, d)

p′ = Π (Y ′ (Θ, u, v, d)) = Π
(
R (Θ) ·Π−1 (u, v, d) + T (Θ)

)
(5)

Covariance of p′ As the uncertainties between Θ and
(u, v, d) are independent, the covariance on the position of
p′ can be written as

Σp′ = JfΘ
· ΣΘ · JTfΘ

+ Jfu,v,d
· Σu,v,d · JTfu,v,d

(6)

with JfΘ
and Jfu,v,d

the Jacobian matrices of f with
respect to Θ and (u, v, d), respectively.

JfΘ
=
∂f

∂Θ
= JΠ (Y ′) · JY ′ (Y ) (7)

Jfu,v,d
=

∂f

∂u, v, d
= JΠ (Y ′) ·R · JΠ−1 (u, v, d) (8)

JΠ, JΠ−1 and JY ′ are the Jacobian matrices of the projec-
tion function, the triangulation function and the change of
basis function, described in the following paragraphs.

Jacobian matrix of the triangulation function The 3D
position of a point is computed with the coordinates of
the projected point in the image and the disparity.



Y = Π−1 (u, v, d) =
−b
d
·

(
u− u0

v − v0

α

)
(9)

where b denotes the baseline between the left and right
camera.

JΠ−1 (u, v, d) =
∂Π−1(u, v, d)

∂u, v, d
=

b

d2
·

(−d 0 u− u0

0 −d v − v0

0 0 α

)
(10)

Jacobian matrix of the projection function The image
position of a projected point in the left image is computed
using the 3D point coordinates, expressed in the camera
frame.

p′ = Π (Y ′) =

 α

z′
· x′ + u0

α

z′
· y′ + v0

 (11)

JΠ (Y ′) =
∂Π(Y ′)

∂Y
=

α

z′2
·
(
z′ 0 −x′
0 z′ −y′

)
(12)

Jacobian matrix of the change of basis function

JY ′ (Y ) =
∂Y ′

∂Θ

∣∣∣∣
Y

=

[
∂R

∂θx, θy, θz
· Y ∂T

∂tx, ty, tz

]
(13)

The derivative of the rotation matrix (see equation 3) is

∂R

∂θx, θy, θz
=

[
RzRy

∂Rx
∂θx

Rz
∂Ry
∂θy

Rx
∂Rz
∂θz

RyRx

]
(14)

2.3 Estimating the probability

The aim is to estimate the probability that a projected
point p′ lies inside the image after a displacement of the
system. From the point’s covariance Σp (obtained from
(6)), a confidence ellipse is deduced and the area of its
intersection with the image support is computed. In this

Section, X = (x, y)
T

is an image point, (M) is the image
frame and (M′) is the ellipse frame (whose origin is the
point p′ and frame axes are the ellipse axes). The ellipse
equation in frame (M) is

(X − p′)T Σ−1
p (X − p′) = s (15)

s = 4.605 for a 90% confidence ellipse, this value can
be found in a table of χ2 distribution with 2 degrees of
freedom. To simplify the computation of the area, it is
done in the ellipse frame (M′). The ellipse equation in the
ellipse frame is then

X ′TΣ−1
D X ′ = s (16)

where ΣD = PTΣpP is a diagonal matrix and X ′ =
PT (X − p′). λ1 and λ2 are the eigenvalues of Σp. The
ellipse semi-axes lengths are a =

√
sλ1 and b =

√
sλ2

and are directed by the eigenvectors of Σ. The total
area of the ellipse is Aell = πab. To compute the area
of the intersection, the intersection points between the
ellipse and the lines corresponding to the borders of the
image are found, expressed in the ellipse frame (M′).
The intersection points are found by solving the system
composed by the equation (16) and the equation of a line

LT X̃ ′ = 0 with L = (m,n, q). This problem is equivalent
to solving a quadratic equation on x or y. If there is no
intersection, the area is A = Aell or A = 0, depending

on whether the point is definitively inside or outside the
image. In the other cases, we compute the double integral
on the domain delimited by the ellipse and the lines
delimiting the image.

D = {X ∈ R2 | XTΣ−1
D X 6 s and LT X̃ 6 0} (17)

A =

∫∫
D

dxdy (18)

The probability is estimated by the ratio of this area to
the ellipse area.

Pr =
A

Aell
(19)

2.4 Algorithm

At time tn, the current pose Pn and a set of 3D points Yn =
(Yi)i∈[1,N ], as defined in Section 2, are known, as well as
the camera matrix K, thanks to a camera calibration. The
objective is to predict the number of points which will be
seen at time tn+H , where H is a parameterized prediction
horizon (see Section 3). The desired pose Pn+H is known.
The points are projected onto the corresponding image
plane: first, a change of basis is done with equation (1) to
express the points in the camera frame. Next, the position
of the projection in the image is calculated with (2). Then,
the uncertainty of each projected point is computed and
the probability of being in the image is evaluated by the
ratio (19). Finally, the number of points with a probability
higher than a threshold sproba are counted. Algorithm 1
summarizes the procedure.

Algorithm 1 Algorithm at time tn
N ← 0

Require: Yn, Pn+H , K, ΣΘ and Σu,v,d
for Y in Yn do

Change of basis: Ỹ ′ = Pn+H Ỹ
Projection: p̃′ = z−1KY ′

Jacobian matrices computation JΠ, JTR
et JX′

Covariance computation Σp′
Computation of Pr, the probability of p′ to be in the

image
if Pr > sproba then

N ← N + 1
end if

end for
return N

2.5 Criterion validation

We have first conducted open loop experiments in order to
validate the proposed criterion on real images. The same
trajectory is repeated three times with a mobile robot,
shown in Figure 5. At each passage, some markers are
added on the walls, to add more texture to the scene. The
three trajectories are denoted by: Sequence 1, (without
markers), Sequence 2, (with a few markers added) and
Sequence 3, (with more markers). In the first sequence,
there is one location where the scene has few interest
points, highlighted by with a circle in the first trajectory
in Figure 4. The images from this location for the three
trajectories are shown in Figure 2, with the projected
points. For the three trajectories, the criterion is evaluated



in each position with different horizons H. The goal of
these experiments is to check that the number of features
is well predicted and that the algorithm can detect the
relatively textureless area. The parameters are set as
follows:

• Time step: te = 0.25 s
• Probability threshold: sproba = 0.5
• Uncertainties ΣΘ = diag(σ2

θx
, σ2
θy
, σ2
θz
, σ2
x, σ

2
y, σ

2
z) and

Σu,v,d = diag(σ2
u, σ

2
v , σ

2
d) with:

· position: σx = σy = σz = 0.005 m
· orientation: σθx = σθy = σθz = 0.001 rad
· image point position: σu = σv = 0.2 pixel
· disparity: σd = 0.4 pixel

Fig. 2. Images and projected points at time tn and their
predicted visibility in the future for different horizons
H: in green, the visible points at time tn+1, in yellow,
the visible points at time tn+4 and in red, the visible
points et time tn+7. The robot follows a trajectory
that turns to the left.

In Figure 3, the number of predicted landmarks and
the number of actually seen landmarks are compared. It
can be noted that the number of predicted landmarks is
slightly overvalued but it follows the variations of the real
number. For instance, at time t = 200, the number of
visible landmarks falls, this event was well predicted by the
proposed criterion. In Figure 4, each trajectory is drawn
with the number of predicted points computed at each
time step. At the circled zone, it can be seen that the
number of predicted landmarks is very low for sequence 1
and higher for the sequences 2 and 3.

As a conclusion, the experiments demonstrate that the
proposed criterion correctly predicts the number of visible
features.

3. AUTONOMOUS NAVIGATION

3.1 Robot model

X = (x, y, θ)
T

is the state vector, with (x, y) the robot

position and θ the heading angle. U = (v, ω)
T

is the
command vector, with v and ω linear speed and angular
speed. The kinematical model of the system can be written
as

Fig. 3. Number of predicted landmarks and number of
landmarks actually seen in the first sequence with
H = 1.

Fig. 4. Number of predicted landmarks for each trajectory
with a horizon H = 1. The circle shows the place
where the number of visible features is very low for
sequence 1.

Xn = g (Xn−1, Un−1) (20){
xn = xn−1 + tevn−1 cos θn−1

yn = yn−1 + tevn−1 sin θn−1

θn = θn−1 + teωn−1

(21)

with te the sampling period.

3.2 MPC

Model Predictive Control is a discrete time command
strategy. Using the dynamical model of the system, some
trajectories are predicted on a finite horizon from a se-
quence of control inputs. For each trajectory, a cost func-
tion which represents the objectives of the mission, is
computed. Finally, the first command of the sequence
corresponding to the minimal cost is applied to the system
and the operation is performed again for the next time
step.

The sequences of control inputs, and corresponding states,
computed from the model (21) are denoted by

Un = {Un, Un+1, . . . , Un+Hc−1} (22)

Xn =
{
Xn+1, Xn+2, . . . , Xn+Hp

}
(23)



Hc is the control horizon and Hp the prediction hori-
zon. After the step Hc, the control Ui = (vHc , 0) , i ∈
[Hc, Hp] is used. The controls inputs are bounded by

(−vmax,−ωmax)
T

and (vmax, ωmax)
T

.

A cost function J (Un,Xn) is defined and optimized to
obtain the optimal control U∗n.

U∗n = arg min
Un

J (Un,Xn)

with Xk satisfying (21),
∀k ∈ [n+ 1, n+Hp]

(24)

The first component U∗n of the optimal solution is applied
to the system.

3.3 Cost function

The cost function is defined as

J = wlocJloc + wwpJwp + wobsJobs (25)

where

• Jloc is the localisation quality cost,
• Jwp is the waypoint navigation cost,
• Jobs is an obstacle avoidance cost.

Each cost is normalized between 0 and 1. The weights w•
tune the relative importance of each cost. To optimize the
cost function, the control input space is discretised and
each command is evaluated. The discretization is set so
as to ensure that the optimal solution can be computed
during a time step of the system. To limit complexity, it
was chosen to apply the same linear and angular velocities
on the entire control horizon.

Localisation quality cost The localisation quality cost
penalizes the trajectories which have few predicted visible
landmarks using the estimated number of points defined
in Section 2.

Jloc = 1− N(Xn+H ,Yn)

Nmax
(26)

where N(Xn+H ,Yn) is the number of predicted landmarks
at n + H and Nmax is the total number of 3D points. H
is the time horizon where the prediction is computed, it
must be fixed beforehand.

Navigation The following cost is built to reach a way-
point Xw, given the predicted positions of the robot
Xk = [xk, yk]T,

Jwp =
1

Hpvmaxte

n+Hp∑
k=n+1

‖Xw −Xk‖2 (27)

Obstacle avoidance This cost penalizes the intersection
of each predicted position in Xn with existing obstacles in
the current occupancy grid. The obstacle avoidance cost
is computed as

Jobs =
1

Hp

n+Hp∑
k=n+1

fo (Xk) . (28)

where fo is a penalty function defined to give a high cost if
there are nearby obstacles and a low cost if the obstacles
are far. More details can be found in Roggeman et al.
(2014).

4. EXPERIMENTAL RESULTS

4.1 Robotic platform

The experimental platform is a four-wheel Robotnik Sum-
mit XL (Figure 5) equipped with a Xtion sensor and a
stereorig composed of two electronically synchronized USB
cameras equipped with 2.8mm lens and separated by a
32cm long baseline. The point cloud sent by the Xtion
sensor is used to compute an occupancy map which can
be used to perform obstacle avoidance.

Fig. 5. The mobile robot in the experimental environment,
the textureless wall is visible behind the robot

4.2 Experiments

The robot is placed at a starting point and has to reach
a waypoint in front of a textureless wall. There are no
obstacles in the environment, so wobs is set to 0. The
shortest path is to go straight towards the waypoint, but,
in this case, the localisation is likely to fail. A better
way would be to get around and approach the waypoint
with a viewing angle that allows the robot to see more
landmarks. The horizons are set at Hc = 5 and Hp = 8.
The others parameters are fixed at the values defined
in Section 2.5. We designed a first test to choose the
horizon H for the localisation cost. With H = 2, the
robot is too short-sighted. Preliminary results suggested
that H = 4 provided satisfactory results, so it was kept
for further analysis. Different weights wloc were tested for
the localisation quality criterion with a waypoint weight
computed as:

wwp = 1− wloc (29)

In Figure 6, the odometry estimated with eVO is com-
pared with the odometry computed by the wheel encoders,
considered as the ground truth in these almost rectilinear
trajectories. The localisation diverges when the localisa-
tion quality cost is not considered (wloc = 0.0). For a small
value of wloc = 0.1, the divergence no longer occurs but the
error remains important. When the weight is increased, the
trajectories are no longer straight and the robot succeeds
in getting closer to the waypoint with a good localisation.
The behaviour of the robot when wloc increases is related
to the number of visible points predicted by our criterion,
see Figure 7.

For each weight, the experiment was repeated ten times.
For both localisation methods, the travelled distance was
computed. Then, we computed the deviation of the trav-
elled distance between our experimental values (eVO) and
the ground truth (wheel encoders).

Figure 8 shows that the deviation consistently decreases
when the weight wloc increases until 0.5. wloc = 0.5 seems



Fig. 6. Trajectories followed by the robot with different
weights wloc, given by eVO and wheel encoders. The
green circle shows the area in which the waypoint is
considered reached.

Fig. 7. Number of 3D points for two trajectories

Fig. 8. Mean, maximum and minimum of the deviation
between experimental length and the ground truth
for each weight wloc

to be a good value as the deviation on the travelled
distance is small for all the trajectories.

5. CONCLUSION

In this paper, we have presented a navigation algorithm for
robotic platforms which considers the future scene quality
on vision-based localisation. It is based on an original
criterion to estimate the future localisation quality. This
criterion is computed from the 3D points given by a visual
odometry algorithm and accounts for the uncertainties
that occur in the process. We have integrated this criterion
into a control loop designed to perform navigation. The
experimental results show that the platform can detect
and avoid the textureless areas and improve its localisation
performance. Future work will consider more complex
missions where obstacle avoidance is involved.
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